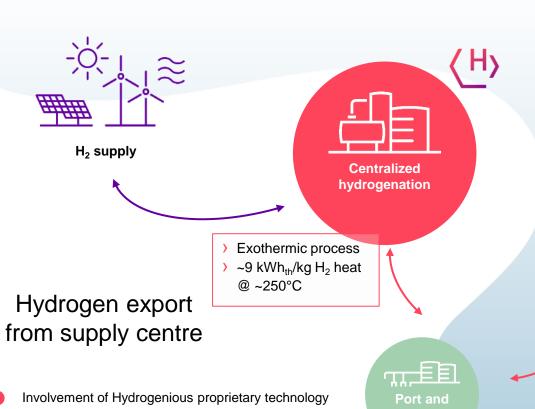
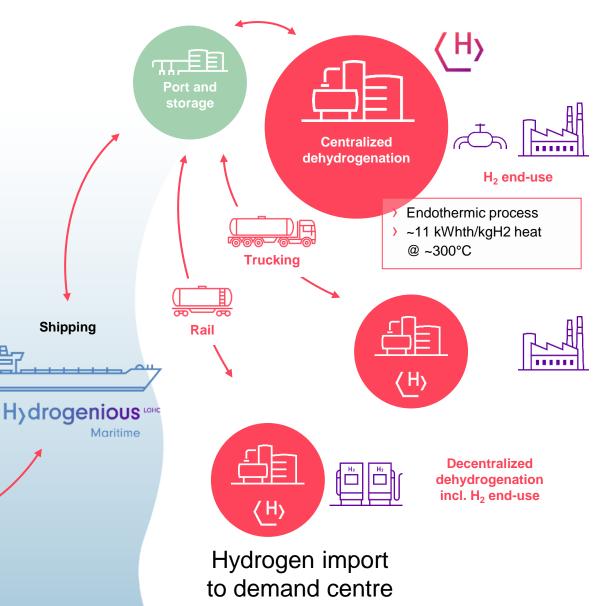


Handling hydrogen as an oil.


NUMOV/BETD Event


Berlin, 22 March 2024

Hydrogenious LOHC

LOHC enables safe & economical hydrogen imports

H₂ transported via LOHC-BT

Our LOHC-BT technology is disrupting hydrogen infrastructure

Superior safety

- No handling of molecular hydrogen
- Hardly flammable with flash point 112,5 °C, nonexplosive, even when loaded with hydrogen
- Hazard potential comparable to Diesel and thus clearly superior to ammonia

Enhanced flexibility

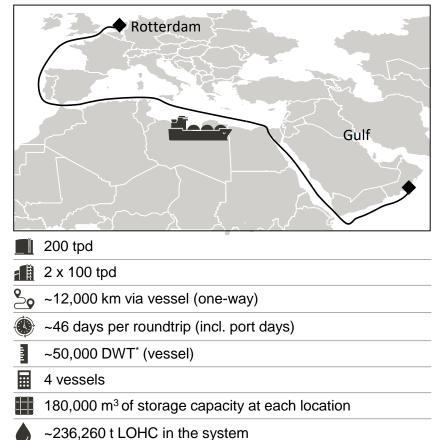
- Conventional liquid fuel infrastructure usable
- Handling at ambient temperatures and pressure during storage and transport
- No self-discharge over time multi-month storage without losses

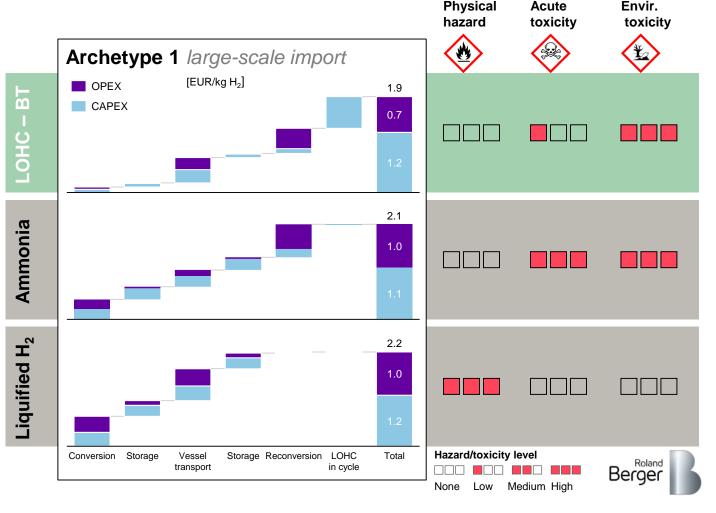
High efficiency

- Competitive volumetric storage density of 54 kg hydrogen per m³ LOHC
- Carrier material commercially available and reusable hundreds of times
- More than 99,9 % hydrogen purity from the process without any purification

LOHC-BT can be transported at ambient conditions, using the existing global fleet of vessels

	Storage density & method	Vessel transport & hydrogen transport volume		Existing global fleet
LOHC-BT	54 kg _{H2} /m ³ _{LOHC-BT} 62 kg _{H2} /t _{LOHC-BT} Storage at ambient conditions		 Transport in very large crude carriers (VLCC) VLCC (280,000 DWT) can carry 17,000 tonnes of hydrogen Upgrade to 450,000 DWT* possible (= 28,000 tonnes of hydrogen) 	######################################
Ammonia (incl. Cracking)	115 kg _{H2} /m ³ _{NH3} 170 kg _{H2} /t _{NH3} Storage at -33 °C at cryogenic conditions	Kore L P a	Transport in LPG vessels > 80k m³ LPG vessel can carry 9,800 tonnes of hydrogen	~ 50 vessels
Liquified H ₂	71 kg _{H2} /m ³ _{LH2} Storage at -253 °C at cryogenic conditions		 Transport in LH₂ vessels The only existing LH₂ vessel 'Suiso Frontier' from Kawasaki can carry 9,000 tonnes of hydrogen (in 1,500 m³ storage tank) 	• 1 vessel


*DWT = Deadweight tonnage



LOHC-BT with strong TCO competitiveness in long-distance and upside from advantageous hazard and toxicity profile versus NH₃

Source: Roland Berger 2021; 2030 TCO values from linear interpolation between 2025 and 2035

Archetype 1: Large-scale import – year 2030

^{*}Deadweight tonnage Depending on technology

Proven LOHC value chain and developing projects for international large-scale hydrogen trade routes

Containerized systems

- Proven technology with systems in Germany,
 Finland and the US
- Successful implementation of a comprehensive
 LOHC value chain

12 systems delivered

Capacity scale up 5 H₂ tpd

- Capacity
- > Storage: 5 H₂ tpd
- > Release: 1,5 & 5 H₂ tpd
- > Reference Projects
 - > Projects Hector & Puffin 2025
 -) Green Hydrogen @
 Blue Danube 2026 a

In Implementation

Capacity scale up to 20 H₂ tpd

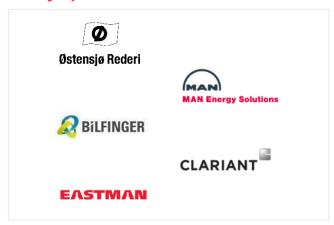
- Capacity
 - > Storage: up to 20 H₂ tpd
 - > Release: 12 H₂ tpd
- Reference Projects
- Port of Rotterdam together with Royal Vopak

Feed

Large-scale plants for int. H₂ import / export up to 500 H₂ tpd

- Capacity
- > 100 to 500 H₂ tpd Storage & Release
- > Reference Projects
 -) H2A-RP 2028
 - 500 H₂ tpd project
 Saudi Arabia (partner undisclosed)
 - Further upcoming feasibility studies in Oman and Morocco

Feasibility studíes



Established in 2013, we are the global leading technology pioneer for LOHC

Investors

Key partners

>230 employees

Technology cooperation partners

>80mn investor funding

Unleash the potential of clean hydrogen.

www.hydrogenious.net

katarina.straka@hydrogenious.net

Hydrogenious LOHC

Hydrogenious LOHC

World's 1st LOHC supplied hydrogen refueling station in Erlangen, Germany

- Green H₂ supply chain scheme:
 Solar Power AEM Electrolyser –
 LOHC Storage Transport LOHC
 Release HRS
- > HRS opened in 2022
- Minimal footprint
- Worldwide first underground storage of 1.5 tons of hydrogen via LOHC-BT (ambient conditions)
- Hydrogen quality (fuel cell purity) according to ISO 14 687-2

Hydrogenious LOHC

H2Sektor-HRS Erlangen

GER/Erlangen

World's 1st LOHC HRS

Commissioning (official): July 2022

Project partner: 6H2MOBILITY

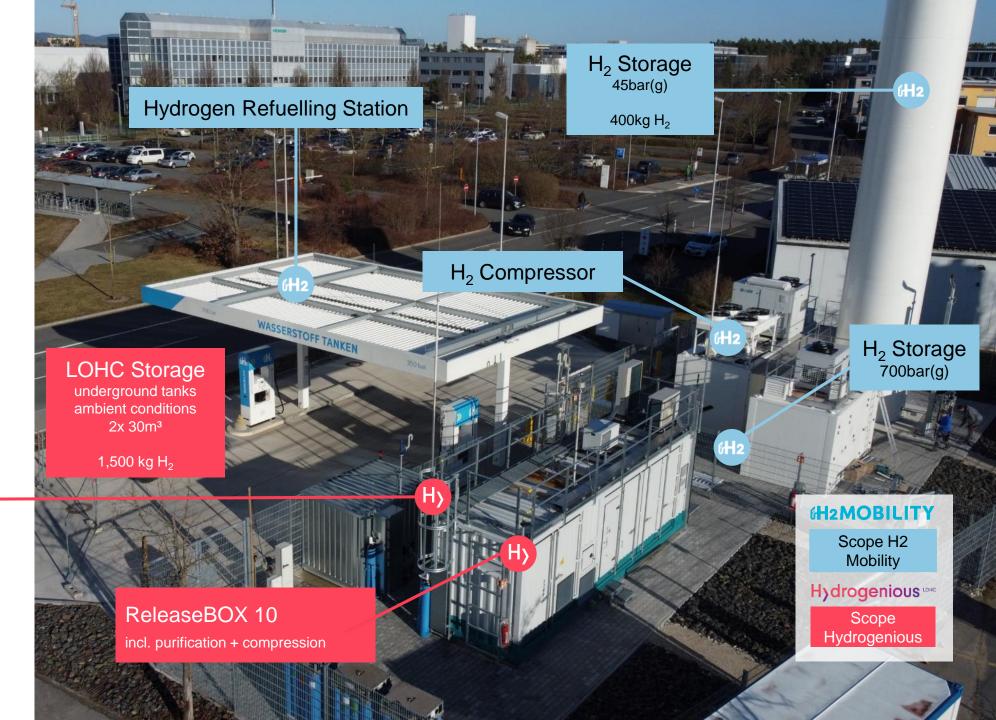
Hydrogen supply: Own production and storage

@Hydrogenious

headquarters, Photovoltaic

Hydrogen release (max.): 9,000 H₂ kgpa [25 H₂ kgpd]

ReleaseBOX 10



H2Sektor-HRS Erlangen

